Let
\( P =
\begin{bmatrix}
3 & -1 & -2 \\
2 & 0 & \alpha \\
3 & -5 & 0
\end{bmatrix} \),
where \( \alpha \in \mathbb{R} \).
Suppose \( Q = [q_{ij}] \) is a matrix satisfying
\( PQ = k I_3 \) for some non-zero \( k \in \mathbb{R} \).
If
\( q_{23} = -\dfrac{k}{8} \)
and
\( |Q| = \dfrac{k^3}{2} \),
then \( \alpha^2 + k^2 \) is equal to __________.