A circular disc has radius \( R_1 \) and thickness \( T_1 \). Another circular disc made of the same material has radius \( R_2 \) and thickness \( T_2 \). If the moments of inertia of both the discs are same and \[ \frac{R_1}{R_2} = 2, \quad \text{then} \quad \frac{T_1}{T_2} = \frac{1}{\alpha}. \] The value of \( \alpha \) is __________.
A solid cylinder of radius $\dfrac{R}{3}$ and length $\dfrac{L}{2}$ is removed along the central axis. Find ratio of initial moment of inertia and moment of inertia of removed cylinder. 
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to