Step 1:
For inconsistency, the determinant of coefficients \( \Delta = 0 \).
\[
\Delta =
\begin{vmatrix}
3 & -2 & -k \\
2 & -4 & -2 \\
1 & 2 & -1
\end{vmatrix}
= 3(4 + 4) + 2(-2 + 2) - k(4 + 4)
= 24 - 8k = 0
\Rightarrow k = 3.
\]
Step 2:
Check \( \Delta_z \) (or others). For inconsistency, at least one of
\( \Delta_x, \Delta_y, \Delta_z \neq 0 \).
\[
\Delta_z =
\begin{vmatrix}
3 & -2 & 10 \\
2 & -4 & 6 \\
1 & 2 & 5m
\end{vmatrix}
= 3(-20m - 12) + 2(10m - 6) + 10(4 + 4)
= 32 - 40m.
\]
Step 3:
For inconsistency,
\[
32 - 40m \neq 0 \Rightarrow m \neq \frac{4}{5}.
\]