Let \( f : \mathbb{R}^2 \to \mathbb{R} \) be given by
\[ f(x, y) = \begin{cases} \dfrac{x^2 y (x - y)}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases} \]
Then
\[ \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) - \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) \text{ at the point } (0, 0) \text{ is ..........} \]