Step 1: Use the Divergence Theorem.
\[
\iint_S \vec{F} \cdot \hat{n} \, dS = \iiint_V \nabla \cdot \vec{F} \, dV.
\]
Since \( \vec{F} = x\hat{i} + y\hat{j} + z\hat{k} \),
\[
\nabla \cdot \vec{F} = 3.
\]
Step 2: Find volume of the sphere.
Sphere radius \( r = 2 \), so
\[
V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (2)^3 = \frac{32\pi}{3}.
\]
Step 3: Compute flux.
\[
\iint_S \vec{F} \cdot \hat{n} \, dS = 3V = 3 \times \frac{32\pi}{3} = 32\pi.
\]
Step 4: Simplify.
\[
\frac{1}{\pi} \iint_S \vec{F} \cdot \hat{n} \, dS = \frac{32\pi}{\pi} = 32.
\]
Final Answer: \[ \boxed{32} \]