Let \( f : \mathbb{R}^2 \to \mathbb{R} \) be given by
\[ f(x, y) = \begin{cases} \dfrac{x^2 y (x - y)}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases} \]
Then
\[ \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) - \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) \text{ at the point } (0, 0) \text{ is ..........} \]
1. Compute $\frac{\partial f}{\partial x}$ at $(0,0)$
$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h}$$
Using the definition of $f(x,y)$:
$$f(h, 0) = \frac{h^2 \cdot 0 \cdot (h-0)}{h^2 + 0^2} = 0$$
$$f(0, 0) = 0$$
$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{0 - 0}{h} = \mathbf{0}$$
2. Compute $\frac{\partial f}{\partial y}$ at $(0,0)$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{k \to 0} \frac{f(0, k) - f(0, 0)}{k}$$
Using the definition of $f(x,y)$:
$$f(0, k) = \frac{0^2 \cdot k \cdot (0-k)}{0^2 + k^2} = 0$$
$$f(0, 0) = 0$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{k \to 0} \frac{0 - 0}{k} = \mathbf{0}$$
3. Compute $\frac{\partial^2 f}{\partial y \partial x}(0,0)$
This is the derivative of $\frac{\partial f}{\partial x}$ with respect to $y$, evaluated at $(0,0)$.
$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{k \to 0} \frac{\frac{\partial f}{\partial x}(0, k) - \frac{\partial f}{\partial x}(0, 0)}{k}$$
We already found $\frac{\partial f}{\partial x}(0, 0) = 0$. Now we need $\frac{\partial f}{\partial x}(0, k)$ for $k \neq 0$.
For $(x,y) \neq (0,0)$:
$$f(x,y) = \frac{x^3 y - x^2 y^2}{x^2 + y^2}$$
$$\frac{\partial f}{\partial x} = \frac{(3x^2 y - 2x y^2)(x^2 + y^2) - (x^3 y - x^2 y^2)(2x)}{(x^2 + y^2)^2}$$
Evaluate $\frac{\partial f}{\partial x}$ at $(0, k)$ where $k \neq 0$:
$$\frac{\partial f}{\partial x}(0, k) = \frac{(0 - 0)(0 + k^2) - (0 - 0)(0)}{(0 + k^2)^2} = \frac{0}{k^4} = 0$$
Substitute back into the limit:
$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{k \to 0} \frac{0 - 0}{k} = \mathbf{0}$$
4. Compute $\frac{\partial^2 f}{\partial x \partial y}(0,0)$
This is the derivative of $\frac{\partial f}{\partial y}$ with respect to $x$, evaluated at $(0,0)$.
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{h \to 0} \frac{\frac{\partial f}{\partial y}(h, 0) - \frac{\partial f}{\partial y}(0, 0)}{h}$$
We already found $\frac{\partial f}{\partial y}(0, 0) = 0$. Now we need $\frac{\partial f}{\partial y}(h, 0)$ for $h \neq 0$.
For $(x,y) \neq (0,0)$:
$$\frac{\partial f}{\partial y} = \frac{(x^3 - 2x^2 y)(x^2 + y^2) - (x^3 y - x^2 y^2)(2y)}{(x^2 + y^2)^2}$$
Evaluate $\frac{\partial f}{\partial y}$ at $(h, 0)$ where $h \neq 0$:
$$\frac{\partial f}{\partial y}(h, 0) = \frac{(h^3 - 0)(h^2 + 0) - (0 - 0)(0)}{(h^2 + 0)^2} = \frac{h^5}{h^4} = h$$
Substitute back into the limit:
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{h \to 0} \frac{h - 0}{h} = \lim_{h \to 0} 1 = \mathbf{1}$$
5. Final Calculation
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) - \frac{\partial^2 f}{\partial y \partial x}(0,0) = 1 - 0 = \mathbf{1}$$