Step 1: Equation of cone.
\( z = \sqrt{x^2 + y^2} \Rightarrow r = z \) in cylindrical coordinates.
Step 2: Limits of integration.
\( z = 0 \) to \( z = 1. \)
Step 3: Surface element for \( z = f(r) \).
\[ dS = \sqrt{1 + \left(\frac{\partial z}{\partial r}\right)^2} \, r \, d\theta \, dr. \] Since \( z = r, \frac{\partial z}{\partial r} = 1 \), \[ dS = \sqrt{2} \, r \, dr \, d\theta. \]
Step 4: Express \( x^2 + y^2 = r^2. \)
\[ \iint_S (x^2 + y^2)\, dS = \int_0^{2\pi}\int_0^1 r^2 (\sqrt{2}r) \, dr\,d\theta = \sqrt{2}\int_0^{2\pi}\int_0^1 r^3 \, dr\,d\theta. \] \[ = \sqrt{2}(2\pi)\left[\frac{r^4}{4}\right]_0^1 = \frac{\pi}{\sqrt{2}}. \]
Final Answer: \( \dfrac{\pi}{\sqrt{2}}. \)