Consider the probability space \( (\Omega, \mathcal{G}, P) \), where \( \Omega = \{1, 2, 3, 4\} \),
\[
\mathcal{G} = \{\emptyset, \Omega, \{4\}, \{2, 3\}, \{1, 4\}, \{1, 2, 3\}, \{2, 3, 4\}\},
\]
and \( P(\{1\}) = \frac{1}{4} \). Let \( X \) be the random variable defined on the above probability space as
\[
X(1) = 1, X(2) = X(3) = 2, X(4) = 3.
\]
If \( P(X \leq 2) = \frac{3}{4} \), then \( P(\{1, 4\}) \) (rounded off to two decimal places) equals ................