Let \( X_1, X_2, \dots, X_{10} \) be a random sample of size 10 from a \( N_3(\mu, \Sigma) \) distribution, where \( \mu \) and non-singular \( \Sigma \) are unknown parameters. If
\[
\overline{X_1} = \frac{1}{5} \sum_{i=1}^{5} X_i, \quad \overline{X_2} = \frac{1}{5} \sum_{i=6}^{10} X_i,
\]
\[
S_1 = \frac{1}{4} \sum_{i=1}^{5} (X_i - \overline{X_1})(X_i - \overline{X_1})^T, \quad S_2 = \frac{1}{4} \sum_{i=6}^{10} (X_i - \overline{X_2})(X_i - \overline{X_2})^T,
\]
then which one of the following statements is NOT true?