Let X be a random sample of size 1 from a population with cumulative distribution function
\[
F(x) = \begin{cases}
0 & \text{if } x < 0, \\
1 - (1 - x)^\theta & \text{if } 0 \leq x < 1, \\
1 & \text{if } x \geq 1
\end{cases}
\]
where \( \theta > 0 \) is an unknown parameter. To test \( H_0 : \theta = 1 \) against \( H_1 : \theta = 2 \), consider using the critical region \( \{ x \in \mathbb{R} : x < 0.5 \} \). If \( \alpha \) and \( \beta \) denote the level and power of the test, respectively, then \( \alpha + \beta \) (rounded off to two decimal places) equals: