Let \( Y \) follow \( N_8(0, I_8) \) distribution, where \( I_8 \) is the \( 8 \times 8 \) identity matrix. Let \( Y^T \Sigma_1 Y \) and \( Y^T \Sigma_2 Y \) be independent and follow central chi-square distributions with 3 and 4 degrees of freedom, respectively, where \( \Sigma_1 \) and \( \Sigma_2 \) are \( 8 \times 8 \) matrices and \( Y^T \) denotes transpose of \( Y \). Then which of the following statements is/are true?
\[
P: \Sigma_1 \, \text{and} \, \Sigma_2 \, \text{are idempotent.} \quad Q: \Sigma_1 \Sigma_2 = 0, \, \text{where} \, 0 \, \text{is the} \, 8 \times 8 \, \text{zero matrix.}
\]