\[ f(x; \theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x>0 \\ 0, & \text{otherwise} \end{cases} \]
where \( \theta \in (0, \infty) \). Let \( X_{(1)} = \min\{ X_1, X_2, \dots, X_n \} \) and \( T = \sum_{i=1}^{n} X_i \). Then \( E(X_{(1)} \mid T) \) equalsWe are given a random sample from an exponential distribution with rate \( \lambda = \frac{1}{\theta} \). The minimum \( X_{(1)} \) follows the distribution \( f_{X_{(1)}}(x) = n \cdot \frac{1}{\theta} e^{-\frac{n x}{\theta}} \), and the sum \( T = \sum_{i=1}^{n} X_i \) has the distribution of a Gamma random variable with shape parameter \( n \) and rate parameter \( \frac{1}{\theta} \).
Step 1: Deriving the expected value of \( X_{(1)} \).
The conditional expectation \( E(X_{(1)} \mid T) \) is derived from the fact that given the total sum \( T \), the expected value of the smallest order statistic \( X_{(1)} \) is \( \frac{(n + 1)T}{2n} \). This result comes from the properties of the exponential distribution and its order statistics.
Final Answer: \[ \boxed{\frac{(n + 1)T}{2n}} \]
Let 
be the order statistics corresponding to a random sample of size 5 from a uniform distribution on \( [0, \theta] \), where \( \theta \in (0, \infty) \). Then which of the following statements is/are true?}
P: \( 3X_{(2)} \) is an unbiased estimator of \( \theta \).
Q: The variance of \( E[2X_{(3)} \mid X_{(5)}] \) is less than or equal to the variance of \( 2X_{(3)} \).
\[ f(x) = \begin{cases} \frac{7}{32} x^6 (2 - x), & 0<x<2 \\ 0, & \text{otherwise} \end{cases} \]
then \( k \) equals _________ (round off to 2 decimal places).