\[ f(x) = \begin{cases} \frac{3}{13} (1 - x)(9 - x), & 0<x<1, \\ 0, & \text{otherwise}. \end{cases} \]
Then\[ \frac{4}{3} E[(X^2 - 15X + 27)] \]
equals _________ (round off to 2 decimal places).The probability distribution of a random variable X is given by
| X | 0 | 1 | 2 |
|---|---|---|---|
| P(X) | \(1 - 7a^2\) | \(\tfrac{1}{2}a + \tfrac{1}{4}\) | \(a^2\) |
If \(a > 0\), then \(P(0 < X \leq 2)\) is equal to
The mean of the density function is \(f(x) = \lambda e^{-\lambda x}, x > 0\) is ____ .