\[ M(t) = \frac{e^t - 1}{t(1 - t)}, \quad t<1. \]
Then\[ P(X>1) = \underline{\hspace{2cm}} \]
(round off to 2 decimal places).The moment generating functions of three independent random variables \( X, Y, Z \) are respectively given as: \[ M_X(t) = \frac{1}{9}(2 + e^t)^2, \quad t \in \mathbb{R}, \] \[ M_Y(t) = e^{e^t - 1}, \quad t \in \mathbb{R}, \] \[ M_Z(t) = e^{2(e^t - 1)}, \quad t \in \mathbb{R}. \] Then \( 10 \cdot \Pr(X>Y + Z) \) equals __________ (rounded off to two decimal places).