To ensure analyticity, \( f(z) = u(x, y) + i v(x, y) \) must satisfy the Cauchy-Riemann equations: \[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \] Given \( u(x, y) = x + y \), we have: \[ \frac{\partial u}{\partial x} = 1, \quad \frac{\partial u}{\partial y} = 1 \] So we require: \[ \frac{\partial v}{\partial y} = 1, \quad \frac{\partial v}{\partial x} = -1 \] Integrating, \[ \frac{\partial v}{\partial x} = -1 \Rightarrow v = -x + g(y) \] \[ \frac{\partial v}{\partial y} = g'(y) = 1 \Rightarrow g(y) = y + c \Rightarrow v = -x + y + c \] So \( v = -\operatorname{Re}(z) + \operatorname{Im}(z) + c \)