$\dfrac{1}{5} \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$
First, compute the determinant of matrix \( A \):
\[ \det(A) = (2)(4) - (3)(1) = 8 - 3 = 5. \]
Since the determinant is not zero (\(\det(A) = 5 \neq 0\)), the matrix \( A \) is invertible.
The inverse of a 2x2 matrix
\[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \]
is given by:
\[ A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}. \]
Applying this to our matrix:
\[ A^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}. \]
Multiply each element of the matrix by \(\frac{1}{5}\):
\[ A^{-1} = \begin{pmatrix} \frac{4}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{pmatrix}. \]
\[ \boxed{\begin{pmatrix} \dfrac{4}{5} & -\dfrac{3}{5} \\ -\dfrac{1}{5} & \dfrac{2}{5} \end{pmatrix}} \]
Alternatively, it can also be expressed as:
\[ \boxed{\dfrac{1}{5} \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}} \]
If the system of linear equations $x + 2y + z = 5, 2x + \lambda y + 4z = 12, 4x + 8y + 12z = 2\mu$ have infinite number of solutions, then the values of $\lambda$ and $\mu$ are ________?