Question:

Evaluate the integral: \[ \int_0^\pi \sin^2(x) \, dx \]

Show Hint

Use trigonometric identities to simplify integrals involving squared trigonometric functions.
Updated On: Jun 17, 2025
  • $\frac{\pi}{2}$
  • $\frac{\pi}{4}$
  • $\pi$
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Use the identity $\sin^2(x) = \frac{1 - \cos(2x)}{2}$: \[ \int_0^\pi \sin^2(x) \, dx = \int_0^\pi \frac{1 - \cos(2x)}{2} \, dx \] \[ = \frac{1}{2} \int_0^\pi 1 \, dx - \frac{1}{2} \int_0^\pi \cos(2x) \, dx \] \[ = \frac{1}{2} \left[ x \right]_0^\pi - \frac{1}{4} \left[ \sin(2x) \right]_0^\pi \] \[ = \frac{\pi}{2} - 0 = \frac{\pi}{2} \]
Was this answer helpful?
0
0