Since \( |f'(x)| \leq 2 \), the function is Lipschitz continuous with constant 2. By the Mean Value Theorem: \[ |f(2) - f(0)| \leq 2 \cdot |2 - 0| = 4 \] Given \( f(0) = 3 \), we have: \[ |f(2) - 3| \leq 4 \Rightarrow -4 \leq f(2) - 3 \leq 4 \Rightarrow -1 \leq f(2) \leq 7 \] So, \( f(2) \in [-1, 7] \).