>
CUET (UG)
List of top Questions asked in CUET (UG)
If
\(\begin{bmatrix} x+4 & 2x & 2x \\[0.3em] 2x & x+4 & 2x\\[0.3em] 2x & 2x & x+4 \end{bmatrix}=\lambda(4-x)^2\)
,then value of
\(\lambda \)
is
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinant
The value of det
\((A^2-2A)\)
,If
\(A=\begin{pmatrix} 1 & 3 \\[0.3em] 2 &1 \end{pmatrix}\)
,is
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
for which value of
\(\lambda\)
is the function ,
\(f(x) = \begin{cases} \lambda(x^2-2x) & \text{if } x \leq 0 \\ 4x+1& \text{if } x > 0 \end{cases}\)
continuous at
\(x=0 ?\)
CUET (UG) - 2023
CUET (UG)
Mathematics
Continuity and differentiability
The value of
\(K\)
,If
\(\begin{bmatrix} 1 & K & 3 \\[0.3em] 3 & K & -2 \\[0.3em] 2 & 3 & -1 \end{bmatrix}=33\)
,is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinant
If
\(A=\begin{pmatrix} 1 & -2 & 3 \\[0.3em] 4 & 2 &5 \end{pmatrix}\)
and
\(A=\begin{pmatrix} 1 & 3 \\[0.3em] 4 & 5 \\[0.3em] 2&1 \end{pmatrix}\)
and
\(BA=(b_{ij})\)
,then
\(b_{21}+b_{32}=\)
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
If
\(\begin{bmatrix} 1 & 2 \\[0.3em] 3 &4 \end{bmatrix}\)
\(\begin{bmatrix} 3& 1 \\[0.3em] 2 &5 \end{bmatrix}\)
\(=\begin{bmatrix} 7 & 11 \\[0.3em] K&23 \end{bmatrix}\)
,then the value of k is
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
If
\(f(x)=e^x\)
and
\(g(x)=log_{e}{x}=lnx \)
then
\((gof)(x) \)
is
CUET (UG) - 2023
CUET (UG)
Mathematics
Composition of Functions and Invertible Function
The value of
\(sin^{-1} [cos(sin^{-1}\frac {\sqrt{3}}{2})]\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Inverse Trigonometric Functions
\(2\tan^{-1} \frac12+\tan^{-1}\frac 17=\tan^{-1}x\)
, then the value of
\(x\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Inverse Trigonometric Functions
The region R on the set
\(A=\{x \in Z:0\leq x\leq 12\}\)
, given by
\(R=\{(a,b):|a-b|\)
is a multiple of 4
\(\}\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Relations and functions
The area of the region bounded by the curve
\( 2y=3x-6\)
, y-axis and the line y=2 and y = −3 is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Area under Simple Curves
The feasible region of an LPP is shown in the figure below.
If
\( z=3x+9y\)
, then the minimum value of
\(z\)
occurs at :
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
The integrating factor of differential equation
\(\frac{dy}{dx}+y=\frac{1+y}{x}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Differential Equations
The value of objective function is maximum under linear constraints is
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
The sum of the order and degree of differential equation
\(2x^3\left(\frac{d^2y}{dx^2}\right)^4 + \frac{d^3y}{dx^3}+y=0\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Differential Equations
A pair of dice is thrown 3 times. If getting a doublet is considered a success, then the probability of two successes is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Probability
Match List - I with List - II.
List - I
List -II
(A)
\(P(\overline{A} \cap B)\)
(I)
\(P(A)+P(B)\)
(B)
\(P(A\cap \overline B)\)
(II)
\(P(A)+P(B)-2P(A\cap B)\)
(C)
\(P[(A\cap \overline B) \cup (\overline A \cap B)]\)
(III)
\(P(B)-P(A\cap B)\)
(D)
\(P(A\cup B)+ P(A\cap B)]\)
(IV)
\(P(B)-P(A\cap B)\)
Choose the
correct
answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Mathematics
Set Theory
If
\(|A|=3\)
and
\(A^{-1}=\begin{bmatrix} 3 &-1 \\[0.3em] \frac{-5}{3} & \frac{2}{3} \\[0.3em] \end{bmatrix}\)
then adj
\(A\)
is
CUET (UG) - 2023
CUET (UG)
Mathematics
Adjoint and Inverse of a Matrix
If
\(A\)
=
\( \begin{vmatrix} 3 & 1 \\[0.1em] -1 & 2 \end{vmatrix}\)
then
\(A^2-5A=\)
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
The value of
\(\int_1^4|x-1|dx \)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Definite Integral
Equation of normal to curve
\(y=x+\frac12sin2x\)
at
\(x=-\frac{\Pi}{2}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Co-ordinate Geometry
\(f(x) = \begin{cases} 3x-8 & \text{if } x \leq 5 \\ 2k & \text{if } x > 5 \end{cases}\)
CUET (UG) - 2023
CUET (UG)
Mathematics
Continuity and differentiability
A particle is moving along the curve
\(y=\frac34x^4+3\)
. The point on the curve at which y-coordinate is changing thrice as fast as the x coordinate, is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Co-ordinate Geometry
\(\begin{vmatrix} 2x & 3 \\[0.1em] 5x & x \end{vmatrix}\)
=
\(\begin{vmatrix} 16 & 3 \\[0.1em] 5 & 2 \end{vmatrix}\)
the value of
\(x\)
is
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinant
The Matrix
\(M = \begin{bmatrix} 0 & 1 & -1 \\[0.3em] -1 & 0 &1 \\[0.3em] 1 & -1 & 0 \end{bmatrix}\)
is
(A) Symmetric matrix
(B) Square matrix
(C) Diagonal matrix
(D) Skew-symmetric matrix
(E) Scalar matrix
Choose the
correct
answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Mathematics
Types of Matrices
Prev
1
...
218
219
220
221
222
...
304
Next