>
CUET (UG)
List of top Questions asked in CUET (UG)
The coordinates of the foot of the perpendicular drawn from origin to the plane
\(2x - 3y + 4z - 6 = 0\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Co-ordinate Geometry
If
\(\frac{x+y}{x-y}+\frac{x-y}{x+y}=\frac{10}{3}\)
,then
\(\frac xy=\)
CUET (UG) - 2023
CUET (UG)
Mathematics
Quadratic Equation
\((6:30+19:50), \)
in 24 hours clock is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Ratio
The mean of Binomial distribution
\(B(4,\frac13) \)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Binomial Distribution
If the planes
\(\overrightarrow{r}.(2\hat{i}-\lambda\hat{j}+3\hat{k})=0\)
and
\(\overrightarrow{r}.(\lambda\hat{i}+5\hat{j}-\hat{k})=5\)
are perpendicular to each other ,then value
\(\lambda^2+\lambda \)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Vector Algebra
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs none is defective, is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Probability
The lines
\(\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-K} \)
and
\(\frac{x-1}{K}=\frac{y-4}{2}=\frac{z-5}{1} \)
are coplanar if :
CUET (UG) - 2023
CUET (UG)
Mathematics
Coplanarity of Two Lines
Corners points of the feasible region for an LPP are
\((1, 1)(2, 0) (3, 1)(\frac32,4)\)
and
\((0,5)\)
.Let
\(z = px + 4y\)
, be the objective function. If maximum of z occurs at
\((\frac32,4)\)
and
\((3,1)\)
,then the value of p is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
The value of
\(sin^{-1}\frac{12}{13} +cos^{-1}\frac45+tan^{-1}\frac{63}{16}\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Inverse Trigonometric Functions
Anita and Bikram are two students. Their chances of solving a problem correctly are
\(\frac13\)
and
\(\frac14\)
respectively. If their probability of making a common error is
\(\frac{1}{20}\)
and they both obtain same answer then the probability that their answer is correct, is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Probability
Objective function
\(z=30x-30y \)
is subject to which combination of constraints, with feasible solution shown in the figure.
(A)
\(x \geq 0, \quad y \geq 0, \quad x \leq 15\)
(B)
\(y \leq 20, \quad x + y \leq 30\)
(C)
\(x + y \leq 30, \quad x + y \leq 15, \quad 2x - y \leq 5\)
(D)
\(2x + y \leq 30, \quad x + y \leq 15, \quad x > 15\)
(E)
\(3x + y \leq 30, \quad x + 3y \leq 15, \quad y \geq 20\)
Choose the
correct
answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
The ratio of areas under the curves
\(y=sinx \)
and
\(y=sin2x\)
,from
\(x=0\)
to
\( x=\frac{\pi}{3}\)
is
CUET (UG) - 2023
CUET (UG)
Mathematics
Area under Simple Curves
Solution of a differential equation
\((1+ y2)dx=(\tan^{-1}y - x)dy\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Solution of Differential Equations
If
\(\int e^x(tanx+1)secxdx=e^xf(x)+C,\)
then
\(f(x)\)
is:
(A)
\(e^X\)
(B)
\(tanx\)
(C)
\(secx\)
(D)
\(secx \ tanx\)
choose the
correct
answer from the options given below
CUET (UG) - 2023
CUET (UG)
Mathematics
Integration
The area of the region bounded by the curve
\(y^2 = 4x\)
, y -axis and the line
\(y = 2\)
is
CUET (UG) - 2023
CUET (UG)
Mathematics
Area under Simple Curves
A vector
\(\overrightarrow{r}\)
is inclined at equal angles to the three axes. If the magnitude of
\(\overrightarrow{r}\)
is
\(3\sqrt3\)
units, then the value of
\(\overrightarrow{r}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Vector Algebra
The number of solutions of the equation
\(xydx— (x2-y2)dy=0\)
with
\( y(2)=3\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Solution of Differential Equations
which is the true of the following ?
(A)Any vector
\(\overrightarrow{r}\)
in space can be written as
\((\overrightarrow{r}.\hat{i})\hat{i}+(\overrightarrow{r}.\hat{j})\hat{j}+(\overrightarrow{r}.\hat{k})\hat{k}\)
(B)If
\(\overrightarrow{a}\)
is perpendicular to
\(\overrightarrow{b}\)
\(|\overrightarrow{a}+\overrightarrow{b}|^2=|\overrightarrow{a}|^2+|\overrightarrow{b}|^2\)
(C)If
\(|\overrightarrow{a}|=2,|\overrightarrow{b}|=1 \)
and
\(\overrightarrow{a}.\overrightarrow{b}=1 \)
,the value of
\((3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})\)
ia 1
(D)
\(\overrightarrow{a}=5\hat{i}-\hat{j}-3\hat{k}\)
and
\(\overrightarrow{b}=\hat{i}+3\hat{j}-5\hat{k}\)
, is the angle between
\(\overrightarrow{a}+\overrightarrow{b}\)
and
\(\overrightarrow{a}-\overrightarrow{b}\)
is
\(60\degree\)
Choose the
correct a
nswer from the options given below:
CUET (UG) - 2023
CUET (UG)
Mathematics
Vector Algebra
The value of C in Rolles's theorem for the function
\(f(x)=e^xsinx,x\epsilon[0,\pi]\)
,is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Relations and functions
The derivative
\(\frac{\mathrm dy}{\mathrm d x}\)
,if
\(x=a(\theta -sin\theta),y=a(1+cos\theta)\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Derivatives
\(\int\limits_\frac{\pi}{6}^\frac{\pi}{3}\frac{1}{1+\sqrt{cotx}}dx=\)
CUET (UG) - 2023
CUET (UG)
Mathematics
Definite Integral
If
\(y=sin^{-1}x \)
and
\((1-x^2)\frac{d^2y}{dx^2} -x \frac{dy}{dx}=K\)
,then value of K is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Differential Equations
The function
\(f(x)=sinx+cosx,0\leq x\leq 2\pi \)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Increasing and Decreasing Functions
The tangent to the curve
\(x=cost(3-2cos^2t),y=sint(3-2sin^2t)\)
at
\(t=\frac{\pi}{4}\)
,makes with the
\(x-axis\)
an angle:
CUET (UG) - 2023
CUET (UG)
Mathematics
Tangents and Normals
The value of det
\((A^2-2A)\)
,If
\(A=\begin{pmatrix} 1 & 3 \\[0.3em] 2 &1 \end{pmatrix}\)
,is
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
Prev
1
...
217
218
219
220
221
...
304
Next