In the given figure, plant \(G_p(s)=\dfrac{2.2}{(1+0.1s)(1+0.4s)(1+1.2s)}\) and compensator \(G_c(s)=K \left\{ \dfrac{1+T_1 s}{1+T_2 s} \right\}\). The disturbance input is \(D(s)\). The disturbance is a unit step, and the steady-state error must not exceed 0.1 unit. Find the minimum value of \(K\). (Round off to 2 decimal places.)
For the closed-loop system with \(G_p(s) = \frac{14.4}{s(1 + 0.1s)}\) and \(G_c(s) = 1\), the unit-step response shows damped oscillations. The damped natural frequency is \(\underline{\hspace{2cm}}\) rad/s. (Round off to 2 decimal places.)
For the given Bode magnitude plot of the transfer function, the value of R is \(\underline{\hspace{2cm}}\) Ω. (Round to 2 decimals).
For the feedback system shown, the transfer function \(\dfrac{E(s)}{R(s)}\) is: