We are given the differential equation:
\[
\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1 - x^2}} = 0
\]
Step 1: Rearrange the equation
Bring the second term to the right-hand side:
\[
\frac{dy}{dx} = -\sqrt{\frac{1 - y^2}{1 - x^2}}
\]
Step 2: Separate variables
\[
\frac{dy}{\sqrt{1 - y^2}} = -\frac{dx}{\sqrt{1 - x^2}}
\]
Step 3: Integrate both sides
Recall that:
\[
\int \frac{1}{\sqrt{1 - z^2}}\,dz = \sin^{-1}z
\]
So we integrate:
\[
\int \frac{1}{\sqrt{1 - y^2}}\,dy = - \int \frac{1}{\sqrt{1 - x^2}}\,dx
\]
Step 4: Solve the integrals
\[
\sin^{-1}y = -\sin^{-1}x + c
\]
Step 5: Rearranging terms
\[
\sin^{-1}x + \sin^{-1}y = c
\]
This is the required general solution.