>
COMEDK UGET
>
Mathematics
List of top Mathematics Questions asked in COMEDK UGET
If
$f\left(x\right)= \cos^{-1} \left(\frac{1-\left(\log _{e} x\right)^{2}}{1+\left(\log _{e} x\right)^{2}}\right)$
, then
$ f'\left(\frac{1}{e}\right) =$
COMEDK UGET - 2010
COMEDK UGET
Mathematics
Statistics
The value of
$\int \frac{10^{x/2}}{\sqrt{10^{-x} - 10^{x}}}dx$
is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Methods of Integration
$\cos^2 \frac{\pi}{12} + \cos^2 \frac{\pi}{4} \cos^2 \frac{5 \pi}{12} = $
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Trigonometric Functions
In the group
$\{1, 2, 3, 4, 5, 6\}$
under multiplication mod
$7, 2^{-1} \times 4 =$
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Relations and functions
The argument of the complex number
$\sin\left(\frac{6\pi}{5}\right) + i\left(1 +\cos \frac{6\pi}{5}\right) $
is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Quadratic Equations
If
$\alpha , \beta , \gamma$
are the roots of the equation
$x^3 + px + q = 0$
, then the value of the determinant
$\begin{vmatrix}\alpha&\beta&\gamma\\ \beta&\gamma&\alpha\\ \gamma&\alpha&\beta\end{vmatrix} = $
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Determinants
If
$A= \begin{bmatrix}1&2\\ 0&1\end{bmatrix} $
, then
$A^n$
is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Matrices
The number of distinct real roots of
$\begin{vmatrix}\sin x&\cos x&\cos x\\ \cos x&\sin x&\cos x\\ \cos x &\cos x&\sin x\end{vmatrix}$
in the interval
$ \left[\frac{-\pi}{4}, \frac{\pi}{4}\right] $
is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Determinants
$\displaystyle\lim_{n\to\infty} \frac{\left(1^{2} +2^{2} + ....+n^{2}\right) \sqrt[n]{n}}{ \left(n+1\right)\left(n+10\right)\left(n+100\right)} = $
COMEDK UGET - 2009
COMEDK UGET
Mathematics
limits and derivatives
The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Differential equations
The volume of the tetrahedron formed by the points
$(1, 1, 1 ), (2, 1, 3), (3, 2, 2)$
and
$(3, 3, 4)$
in cubic units is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Vector Algebra
The value of
$\left(0.2\right)^{\log_{\sqrt{5}}\left(\frac{1}{4} + \frac{1}{8} + \frac{1}{6} + .... to \, \infty\right)}$
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Probability
$\int \frac{x^{2}+1}{x^{4}+1}dx $
COMEDK UGET - 2009
COMEDK UGET
Mathematics
integral
$\int e^{x} \left\{\frac{1+\sin x \cos x}{\cos^{2} x}\right\} dx = $
COMEDK UGET - 2009
COMEDK UGET
Mathematics
integral
If
$\tan A - \tan B = x$
and
$\cot B - \cot A = y$
, then
$\cot (A- B) =$
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Trigonometric Functions
The subtangent at
$x = \pi /2$
on the curve
$y = x \sin x$
is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Application of derivatives
If
$y =\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y}}}} +.....$
then
$ \frac{dy}{dx} $
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Statistics
The function
$f\left(x\right) = \left(\frac{\log_{e}\left(1+ax\right) - \log_{e}\left(1-bx\right)}{x}\right)$
is undefined at
$x = 0$
. The value which should be assigned to
$f$
at
$x = 0$
so that it is continuous at
$x = 0$
is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Statistics
The maximum value of
$\left(\frac{1}{x}\right)^{2x^2}$
is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Application of derivatives
Let
$x$
be a number which exceeds its square by the greatest possible quantity, then
$x$
=
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Application of derivatives
Which of the following functions is differentiable at
$x = 0$
?
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Continuity and differentiability
If
$x= a\left(\cos t+\log \tan \frac{t}{2}\right), y = a \sin t, $
then
$ \frac{dy}{dx} $
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Continuity and differentiability
$\int \frac{2^{x+1} - 5^{x-1}}{10^{x}}dx = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
integral
If
$\int \frac{1}{x+x^{5}}dx =f\left(x\right)+c , $
then
$\int \frac{x^{4}}{x+x^{5}} dx = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
integral
If
$\vec{a} = \hat{i} + \lambda \hat{j} + 2 \hat{k}$
and
$\vec{b} = \mu \hat{i} + \lambda \hat{j} + 2 \hat{k}$
are orthogonal and if
$|\vec{a} | = |\vec{b}|$
, then
$(\lambda, \mu)$
=
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Vector Algebra
Prev
1
...
14
15
16
17
18
19
Next