>
COMEDK UGET
>
Mathematics
List of top Mathematics Questions asked in COMEDK UGET
If
$\vec{a} , \vec{b} ,\vec{c}$
are unit vectors and
$\theta$
is the angle between them, then
$| \vec{a} - \vec{b}| = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Vector Algebra
$\lim_{x\to0} \frac{\tan x -\sin x}{x^{3}} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
limits and derivatives
If
$y =\left(1+x\right)\left(1+x^{2}\right) ....\left(1+x^{100}\right),$
then
$\frac{dx}{dy} $
at
$x = 0$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
limits and derivatives
If a set
$A$
has
$n$
elements, then the number of relations on
$A$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Relations and functions
The acute angle between the hour hand and minute hand of a clock when the time is
$5\, hours$
and
$40\, minute$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
measurement of angles
If
$\log (x + z) + \log (x - 2y + z) = 2 \log (x - z),$
then
$ x, y, z$
are in
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Sequence and series
$\displaystyle\lim_{n\to\infty} \frac{1^{2}+2^{2} +...+n^{2}}{4n^{3}+6n^{2}-5n+1}=$
COMEDK UGET - 2008
COMEDK UGET
Mathematics
limits and derivatives
If
$C$
is the centre of the ellipse
$\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1 $
and S is one of the foci, then the ratio of CS to semi-minor axis of the ellipse is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Conic sections
The modulus and amplitude of
$\frac{ 1 + 2i}{1 - (1 - i)^2}$
are respectively
COMEDK UGET - 2008
COMEDK UGET
Mathematics
complex numbers
The derivative of
$\sin x^{\circ} \, \, \cos x$
with respect to
$x$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Differentiability
If
$n$
is a non-negative integer and
$A = \begin{bmatrix}1&0\\ 1&1\end{bmatrix} $
, then
$A^n = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Matrices
The value of
$x$
for which
$f(x) = x^3 - 6x^2 - 36x + 7 $
is increasing, belong to
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Application of derivatives
If
$ y =\sin^{-1} \left(\frac{5x+12 \sqrt{1 -x^{2}}}{13}\right)$
, then
$ \frac{dy}{dx} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
The value of
$\tan^{-1} \frac{\sqrt{2+\sqrt{3}} -\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3} } +\sqrt{2-\sqrt{3}}} $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Inverse Trigonometric Functions
If
$[x]$
denotes the greatest integer function, then
$\int\limits_{1}^{4} \left(\left[x\right] -1\right)\left(\left[x\right] -2\right)\left(\left[x\right] -3\right)\left(\left[x\right] -4\right)dx = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
integral
If
$\log_2 \: \sin x - \log_2 \cos x -\log_2(1 - \tan^2x) = - 1$
, then
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Trigonometric Functions
If
$u = f(x^2) , v = g(x^3) , f'(x) = \sin x $
and
$g'(x) = \cos x,$
then
$ \frac{du}{dv} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
$x= 3 \cos t - 2 \cos^{3} t , y = 3\sin t - 2 \sin^{3} t ,$
then
$ \frac{d^{2}y}{dx^{2}} t = \frac{\pi}{6}$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
$\tan^{-1} \left(\frac{x}{y}\right) + \log \sqrt{x^{2} +y^{2}} = 0 $
, then
$\frac{dx}{dy} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
Let
$f\left(x\right) = \frac{\log\left(1+ex\right)-\log\left(1-x\right)}{x} , x\ne0 $
. Then
$f$
is continuous at
$x = 0$
if
$f(0)$
=
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
$\sqrt{1-x^{2} } + \sqrt{1- y^{2}} =x -y $
, then
$\frac{dy}{dx} = $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
A particular solution of
$ \frac{dy}{dx} = (x+9y)^2$
when
$ x = 0, y = \frac{1}{27}$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Differential equations
The amplitude of
$\sin \frac{\pi}{5} + i\left( 1 - \cos \frac{\pi}{5}\right) $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
argand plane
A set
$A$
has
$5$
elements. Then the maximum number of relations on
$A$
(including empty relation) is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Relations and functions
The angle between the asymptotes of the hyperbola
$x^2 - 3y^2 = 12$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Hyperbola
Prev
1
...
15
16
17
18
19
Next