Step 1: Set up the line equation.
Line through \( (-3, 4) \): \( y - 4 = m(x + 3) \), or \( mx - y + 3m + 4 = 0 \).
Step 2: Apply the distance condition.
Distance from \( (2, -8) \): \( \frac{|m \cdot 2 - (-8) + 3m + 4|}{\sqrt{m^2 + 1}} = \frac{|5m + 12|}{\sqrt{m^2 + 1}} = 5 \).
\[ (5m + 12)^2 = 25 (m^2 + 1) \quad \Rightarrow \quad 120m + 119 = 0 \quad \Rightarrow \quad m = -\frac{119}{120}. \] One line: \( y - 4 = -\frac{119}{120}(x + 3) \).
Step 3: Check the vertical line.
Line \( x = -3 \). Distance from \( (2, -8) \): \( |2 - (-3)| = 5 \). Second line.
Step 4: Conclusion.
Total lines = 2.
Evaluate the correctness of the given statements.
I. Negative deviation occurs when A-B interactions are stronger than A-A and B-B.
II. Reverse osmosis requires applied pressure greater than osmotic pressure.