Let \( a, b, c \) be in AP and \( |a|<1, |b|<1, |c|<1 \).
If
\[
x = 1 + a + a^2 + a^3 + \dots \quad \text{to} \quad \infty,
\]
\[
y = 1 + b + b^2 + b^3 + \dots \quad \text{to} \quad \infty,
\]
\[
z = 1 + c + c^2 + c^3 + \dots \quad \text{to} \quad \infty,
\]
then \( x, y, z \) are in: