To solve the problem, we need to determine the largest positive integer \( k \) that divides \( 81^n + 20n - 1 \) for all \( n \in \mathbb{N} \). Then, we find the sum of all positive divisors of \( k \) and compute \( S - k \).
Step 1: Find the Largest Divisor \( k \)
We test small values of \( n \) to find a pattern or a common divisor.
For \( n = 1 \):
\[
81^1 + 20 \times 1 - 1 = 81 + 20 - 1 = 100
\]
For \( n = 2 \):
\[
81^2 + 20 \times 2 - 1 = 6561 + 40 - 1 = 6600
\]
For \( n = 3 \):
\[
81^3 + 20 \times 3 - 1 = 531441 + 60 - 1 = 531500
\]
We observe that 100 divides all these values. To confirm that 100 is the largest such divisor, we check if 100 divides \( 81^n + 20n - 1 \) for all \( n \).
Step 2: Verify Divisibility by 100
We can use modular arithmetic to verify that \( 81^n + 20n - 1 \equiv 0 \pmod{100} \) for all \( n \).
First, note that \( 81 \equiv 1 \pmod{20} \), so:
\[
81^n \equiv 1^n \equiv 1 \pmod{20}
\]
Thus:
\[
81^n + 20n - 1 \equiv 1 + 0 - 1 \equiv 0 \pmod{20}
\]
Next, check modulo 5:
\[
81 \equiv 1 \pmod{5} \Rightarrow 81^n \equiv 1 \pmod{5}
\]
\[
20n \equiv 0 \pmod{5}
\]
\[
81^n + 20n - 1 \equiv 1 + 0 - 1 \equiv 0 \pmod{5}
\]
Since 100 is the least common multiple of 20 and 5, and the expression is divisible by both 20 and 5, it is divisible by 100. Therefore, \( k = 100 \).
Step 3: Find the Sum of Divisors of \( k \)
The prime factorization of 100 is:
\[
100 = 2^2 \times 5^2
\]
The sum of the divisors \( S \) is:
\[
S = (1 + 2 + 2^2)(1 + 5 + 5^2) = (1 + 2 + 4)(1 + 5 + 25) = 7 \times 31 = 217
\]
Step 4: Compute \( S - k \)
\[
S - k = 217 - 100 = 117
\]
Final Answer:
\[
\boxed{117}
\]
This corresponds to option (1).