The service times (in minutes) at two petrol pumps \( P_1 \) and \( P_2 \) follow distributions with probability density functions \[ f_1(x) = \lambda e^{-\lambda x}, \quad x>0 \quad {and} \quad f_2(x) = \lambda^2 x e^{-\lambda x}, \quad x>0, \] respectively, where \( \lambda>0 \). For service, a customer chooses \( P_1 \) or \( P_2 \) randomly with equal probability. Suppose, the probability that the service time for the customer is more than one minute, is \( 2e^{-2} \). Then the value of \( \lambda \) equals _________ (answer in integer).