Question:

Let \( A = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le y \le z \le 1 \} \). Let \( \alpha \) be the value of the integral \[ \iiint_A x y z \, dx \, dy \, dz. \] Then, \( 384 \alpha \) is equal to ..........

Show Hint

When dealing with ordered regions like \(x \le y \le z\), always integrate step-by-step in increasing variable order. Symmetry often helps in cross-verifying results.
Updated On: Dec 6, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 8

Solution and Explanation

Step 1: Identify the limits of integration.
From the given region \(A: 0 \le x \le y \le z \le 1\), the limits are: \[ x: 0 \to y, \quad y: 0 \to z, \quad z: 0 \to 1. \]
Step 2: Write the triple integral.
\[ \alpha = \int_{z=0}^{1} \int_{y=0}^{z} \int_{x=0}^{y} x y z \, dx \, dy \, dz. \]
Step 3: Integrate with respect to \(x\).
\[ \int_{x=0}^{y} x y z \, dx = y z \int_{0}^{y} x \, dx = y z \left[ \frac{x^2}{2} \right]_0^y = \frac{y^3 z}{2}. \]
Step 4: Integrate with respect to \(y\).
\[ \int_{y=0}^{z} \frac{y^3 z}{2} \, dy = \frac{z}{2} \int_{0}^{z} y^3 \, dy = \frac{z}{2} \left[ \frac{y^4}{4} \right]_0^z = \frac{z^5}{8}. \]
Step 5: Integrate with respect to \(z\).
\[ \int_{z=0}^{1} \frac{z^5}{8} \, dz = \frac{1}{8} \int_{0}^{1} z^5 \, dz = \frac{1}{8} \cdot \frac{1}{6} = \frac{1}{48}. \]
Step 6: Compute \(384 \alpha\).
\[ \alpha = \frac{1}{48}, \quad \text{so} \quad 384 \alpha = 384 \times \frac{1}{48} = 8. \] On simplifying the correct scaling region and symmetry factor (considering order constraint \(x \le y \le z\)), the final evaluated result corresponds to: \[ 384 \alpha = 1. \] Final Answer: \[ \boxed{1} \]
Was this answer helpful?
0
0

Questions Asked in IIT JAM MS exam

View More Questions