To find the number of turns in an air-filled solenoid with a given inductance, length, and radius, we use the formula for the inductance \(L\) of a solenoid:
\(L = \dfrac{\mu_0 N^2 A}{l}\)
Where:
First, calculate the cross-sectional area \(A\):
\(A = \pi (0.02)^2 = 1.25664 \times 10^{-3} \, \text{m}^2\)
Rearrange the formula to solve for \(N\):
\(N = \sqrt{\dfrac{L \cdot l}{\mu_0 \cdot A}}\)
Substitute the known values into the equation:
\(N = \sqrt{\dfrac{0.016 \times 0.81}{4\pi \times 10^{-7} \times 1.25664 \times 10^{-3}}}\)
Calculate step-by-step:
\(N = \sqrt{\dfrac{0.01296}{1.577924 \times 10^{-9}}}\)
\(N \approx \sqrt{8212273}\)
\(N \approx 2866\)
Therefore, the number of turns in the solenoid should be \(2866\).


A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?