To find the number of turns in an air-filled solenoid with a given inductance, length, and radius, we use the formula for the inductance \(L\) of a solenoid:
\(L = \dfrac{\mu_0 N^2 A}{l}\)
Where:
First, calculate the cross-sectional area \(A\):
\(A = \pi (0.02)^2 = 1.25664 \times 10^{-3} \, \text{m}^2\)
Rearrange the formula to solve for \(N\):
\(N = \sqrt{\dfrac{L \cdot l}{\mu_0 \cdot A}}\)
Substitute the known values into the equation:
\(N = \sqrt{\dfrac{0.016 \times 0.81}{4\pi \times 10^{-7} \times 1.25664 \times 10^{-3}}}\)
Calculate step-by-step:
\(N = \sqrt{\dfrac{0.01296}{1.577924 \times 10^{-9}}}\)
\(N \approx \sqrt{8212273}\)
\(N \approx 2866\)
Therefore, the number of turns in the solenoid should be \(2866\).

A coil of area A and N turns is rotating with angular velocity \( \omega\) in a uniform magnetic field \(\vec{B}\) about an axis perpendicular to \( \vec{B}\) Magnetic flux \(\varphi \text{ and induced emf } \varepsilon \text{ across it, at an instant when } \vec{B} \text{ is parallel to the plane of the coil, are:}\)
Alexia Limited invited applications for issuing 1,00,000 equity shares of ₹ 10 each at premium of ₹ 10 per share.
The amount was payable as follows:
Applications were received for 1,50,000 equity shares and allotment was made to the applicants as follows:
Category A: Applicants for 90,000 shares were allotted 70,000 shares.
Category B: Applicants for 60,000 shares were allotted 30,000 shares.
Excess money received on application was adjusted towards allotment and first and final call.
Shekhar, who had applied for 1200 shares failed to pay the first and final call. Shekhar belonged to category B.
Pass necessary journal entries for the above transactions in the books of Alexia Limited. Open calls in arrears and calls in advance account, wherever necessary.