We are given the integral \( \int x^5 e^{1 - x^6} \, dx \) and asked to find the solution.
We can solve this integral using substitution. Let:
\( u = 1 - x^6 \),
so that \( du = -6x^5 \, dx \), or equivalently, \( -\frac{1}{6} du = x^5 \, dx \).
Substituting into the integral, we get:
\( \int x^5 e^{1 - x^6} \, dx = -\frac{1}{6} \int e^u \, du \).
The integral of \( e^u \) is \( e^u \), so we have:
\( -\frac{1}{6} e^u + C \).
Substitute back \( u = 1 - x^6 \):
\( -\frac{1}{6} e^{1 - x^6} + C \).
The correct answer is \( \frac{-1}{6} e^{1 - x^6} + C \).