We are given the integral \( \int x^5 e^{1 - x^6} \, dx \) and asked to find the solution.
We can solve this integral using substitution. Let:
\( u = 1 - x^6 \),
so that \( du = -6x^5 \, dx \), or equivalently, \( -\frac{1}{6} du = x^5 \, dx \).
Substituting into the integral, we get:
\( \int x^5 e^{1 - x^6} \, dx = -\frac{1}{6} \int e^u \, du \).
The integral of \( e^u \) is \( e^u \), so we have:
\( -\frac{1}{6} e^u + C \).
Substitute back \( u = 1 - x^6 \):
\( -\frac{1}{6} e^{1 - x^6} + C \).
The correct answer is \( \frac{-1}{6} e^{1 - x^6} + C \).
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to: