L.H.S= \(\begin{vmatrix} a& a^2& b_c\\ b & b^2 & ca \\ c& c^2& ab \\ \end{vmatrix} \)
\(=\frac{1}{abc}\begin{vmatrix} a^2& a^3& abc\\ b^2 & b^3 & abc \\ c^2& c^3& abc \\ \end{vmatrix} [R_1\rightarrow{aR_1,R_2}\rightarrow{bR_2,R_3}\rightarrow{cR_3}]\)
\(=\frac{abc}{abc}\begin{vmatrix} a^2& a^3& 1\\ b^2 & b^3 & 1 \\ c^2& c^3& 1 \\ \end{vmatrix} =\begin{vmatrix} a^2& a^3& 1\\ b^2 & b^3 & 1 \\ c^2& c^3& 1 \\ \end{vmatrix} \) [Taking out factor ABC from C,]
= \(\begin{vmatrix} 1& a^2& a^3\\ 1 & b^2& b^3 \\ 1& c^2& c^3 \\ \end{vmatrix} \) [Applying \(C_1\rightarrow{C_1}\) \(C_2\rightarrow \)
=R.H.S
Hence, the given result is proved.