Given:
MSR (Main Scale Reading) = 1 mm, CSD (Circular Scale Reading) = 42
Least Count (LC) is calculated as:
\[ \text{Least Count (LC)} = \frac{\text{Pitch}}{\text{Number of CSD}} = \frac{1}{100} \, \text{mm} = 0.01 \, \text{mm}. \]
The diameter is calculated as:
\[ \text{Diameter} = \text{MSR} + \text{LC} \times \text{CSD}. \]
Substitute the values:
\[ \text{Diameter} = 1 + (0.01) \times 42 \, \text{mm} = 1.42 \, \text{mm}. \]
Since the diameter is given as \( \frac{x}{50} \), equate:
\[ \frac{x}{50} = 1.42 \implies x = 71. \]
The value of \( x \) is: [71]
For the reaction, $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
Attainment of equilibrium is predicted correctly by:
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.