The time period \( T \) of a spring is given by:
\[ T = 2\pi \sqrt{\frac{m}{k}}. \]
Squaring both sides:
\[ T^2 \propto \frac{m}{k}. \]
Taking percentage errors:
\[ \frac{\Delta T^2}{T^2} = \frac{\Delta m}{m} - \frac{\Delta k}{k}. \]
Substituting the relationship \( \frac{\Delta T^2}{T^2} = 2 \frac{\Delta T}{T} \), we get:
\[ 2 \frac{\Delta T}{T} = \frac{\Delta m}{m} - \frac{\Delta k}{k}. \]
Rewriting for \( \frac{\Delta k}{k} \):
\[ \frac{\Delta k}{k} = \frac{\Delta m}{m} - 2 \frac{\Delta T}{T}. \]
Given:
\( \frac{\Delta T}{T} = 2\% \) (positive error),
\( \frac{\Delta m}{m} = -1\% \) (negative error).
Substitute the values:
\[ \frac{\Delta k}{k} = (-1\%) - 2(2\%) = -1\% - 4\% = -5\%. \]
Hence, the magnitude of the percentage error in \( k \) is:
\[ \left| \frac{\Delta k}{k} \right| = 5\%. \]
Final Answer: \( 5\% \) (Option 4)
A 0 to 30 V voltmeter has an error of \(\pm 2\%\) of FSD. What is the range of readings if the voltage is 30V?
Match List-I (Instrument) and List-II (Error) and select the correct answer using the code given below the lists:
List-I (Instrument) | List-II (Error) | ||
---|---|---|---|
A. | PAMC voltmeter | P. | Eddy current error |
B. | AC ammeter | Q. | Phase angle error |
C. | Current Transformer | R. | Braking system error |
D. | Energy meter | S. | Temperature error |