The time period \( T \) of a spring is given by:
\[ T = 2\pi \sqrt{\frac{m}{k}}. \]
Squaring both sides:
\[ T^2 \propto \frac{m}{k}. \]
Taking percentage errors:
\[ \frac{\Delta T^2}{T^2} = \frac{\Delta m}{m} - \frac{\Delta k}{k}. \]
Substituting the relationship \( \frac{\Delta T^2}{T^2} = 2 \frac{\Delta T}{T} \), we get:
\[ 2 \frac{\Delta T}{T} = \frac{\Delta m}{m} - \frac{\Delta k}{k}. \]
Rewriting for \( \frac{\Delta k}{k} \):
\[ \frac{\Delta k}{k} = \frac{\Delta m}{m} - 2 \frac{\Delta T}{T}. \]
Given:
\( \frac{\Delta T}{T} = 2\% \) (positive error),
\( \frac{\Delta m}{m} = -1\% \) (negative error).
Substitute the values:
\[ \frac{\Delta k}{k} = (-1\%) - 2(2\%) = -1\% - 4\% = -5\%. \]
Hence, the magnitude of the percentage error in \( k \) is:
\[ \left| \frac{\Delta k}{k} \right| = 5\%. \]
Final Answer: \( 5\% \) (Option 4)
For the reaction, $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
Attainment of equilibrium is predicted correctly by:
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.