The period \( T \) of a simple pendulum is given by:
\[ T = 2\pi \sqrt{\frac{\ell}{g}}. \]Rearrange to solve for \( g \):
\[ g = \frac{4\pi^2 \ell}{T^2}. \]The percentage error in \( g \) is given by:
\[ \frac{\Delta g}{g} = \frac{\Delta \ell}{\ell} + 2 \frac{\Delta T}{T}. \]Substitute the values:
\[ \Delta \ell = 0.2 \, \text{cm} = 0.002 \, \text{m}, \quad \ell = 0.2 \, \text{m}, \] \[ \Delta T = 1 \, \text{s}, \quad T = \frac{40}{50} = 0.8 \, \text{s}. \]Calculate the percentage errors:
\[ \frac{\Delta \ell}{\ell} = \frac{0.002}{0.2} = 0.01 = 1\%. \] \[ 2 \frac{\Delta T}{T} = 2 \times \frac{1}{40} = 0.05 = 5\%. \]Therefore, the total percentage error in \( g \) is:
\[ 1\% + 5\% = 6\%. \]Thus, \( N = 6 \).
For the reaction, $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
Attainment of equilibrium is predicted correctly by:
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.