In a Daniell cell, the standard electrode potential \( E^\circ_{{cell}} \) is 1.1 V. The cell operates with copper and zinc electrodes, and the standard cell potential is determined by the difference in electrode potentials of the two half-reactions.
Thus, the correct answer is (C).
In the above diagram, the standard electrode potentials are given in volts (over the arrow). The value of \( E^\circ_{\text{FeO}_4^{2-}/\text{Fe}^{2+}} \) is:
The elements of the 3d transition series are given as: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn. Answer the following:
(a) Copper has an exceptionally positive \( E^\circ_{\text{M}^{2+}/\text{M}} \) value, why?
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: