In the above diagram, the standard electrode potentials are given in volts (over the arrow). The value of \( E^\circ_{\text{FeO}_4^{2-}/\text{Fe}^{2+}} \) is:
Assertion (A): Cu cannot liberate \( H_2 \) on reaction with dilute mineral acids.
Reason (R): Cu has positive electrode potential.
The elements of the 3d transition series are given as: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn. Answer the following:
Copper has an exceptionally positive \( E^\circ_{\text{M}^{2+}/\text{M}} \) value, why?
Match the Following
List-I (Use) | Item | Matches with | List-II (Substance) |
---|---|---|---|
A | Electrodes in batteries | II | Polyacetylene |
B | Welding of metals | III | Oxyacetylene |
C | Toys | I | Polypropylene |
An electrochemical cell is fueled by the combustion of butane at 1 bar and 298 K. Its cell potential is $ \frac{X}{F} \times 10^3 $ volts, where $ F $ is the Faraday constant. The value of $ X $ is ____.
Use: Standard Gibbs energies of formation at 298 K are:
$ \Delta_f G^\circ_{CO_2} = -394 \, \text{kJ mol}^{-1}; \quad \Delta_f G^\circ_{water} = -237 \, \text{kJ mol}^{-1}; \quad \Delta_f G^\circ_{butane} = -18 \, \text{kJ mol}^{-1} $
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.