Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
Assertion (A): Cu cannot liberate \( H_2 \) on reaction with dilute mineral acids.
Reason (R): Cu has positive electrode potential.
The elements of the 3d transition series are given as: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn. Answer the following:
Copper has an exceptionally positive \( E^\circ_{\text{M}^{2+}/\text{M}} \) value, why?
Match the Following
List-I (Use) | Item | Matches with | List-II (Substance) |
---|---|---|---|
A | Electrodes in batteries | II | Polyacetylene |
B | Welding of metals | III | Oxyacetylene |
C | Toys | I | Polypropylene |
An electrochemical cell is fueled by the combustion of butane at 1 bar and 298 K. Its cell potential is $ \frac{X}{F} \times 10^3 $ volts, where $ F $ is the Faraday constant. The value of $ X $ is ____.
Use: Standard Gibbs energies of formation at 298 K are:
$ \Delta_f G^\circ_{CO_2} = -394 \, \text{kJ mol}^{-1}; \quad \Delta_f G^\circ_{water} = -237 \, \text{kJ mol}^{-1}; \quad \Delta_f G^\circ_{butane} = -18 \, \text{kJ mol}^{-1} $
Which of the following statement is true with respect to H\(_2\)O, NH\(_3\) and CH\(_4\)?
(A) The central atoms of all the molecules are sp\(^3\) hybridized.
(B) The H–O–H, H–N–H and H–C–H angles in the above molecules are 104.5°, 107.5° and 109.5° respectively.
(C) The increasing order of dipole moment is CH\(_4\)<NH\(_3\)<H\(_2\)O.
(D) Both H\(_2\)O and NH\(_3\) are Lewis acids and CH\(_4\) is a Lewis base.
(E) A solution of NH\(_3\) in H\(_2\)O is basic. In this solution NH\(_3\) and H\(_2\)O act as Lowry-Bronsted acid and base respectively.
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?