Matrix:
\( \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \) Check:
- Hermitian: Yes (Transpose + conjugate gives the original matrix)
- Unitary: Yes (Inverse equals conjugate transpose) Result: This matrix is Hermitian and Unitary.
Matrix:
\( \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \) Check:
- Hermitian: No (Transpose + conjugate does not give the original matrix)
- Unitary: Not applicable Result: Not Hermitian and Unitary.
Matrix:
\( \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} \) Check:
- Hermitian: Yes (Transpose + conjugate gives the original matrix)
- Unitary: No (Inverse does not equal conjugate transpose) Result: Not both Hermitian and Unitary.
Matrix:
\( \begin{pmatrix} 0 & 1+i \\ 1-i & 0 \end{pmatrix} \) Check:
- Hermitian: Yes (Transpose + conjugate gives the original matrix)
- Unitary: No (Inverse does not equal conjugate transpose) Result: Not both Hermitian and Unitary.
Conclusion:
The matrix \( \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \) is Hermitian and Unitary.