The area of the triangle OAB is given by:
Area = (1/2) |OA Γ OB|
where OA Γ OB is the cross product of the vectors OA and OB.
Given vectors:
\[ \overrightarrow{OA} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \overrightarrow{OB} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \]
The cross product is:
\[ \overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 2 & -1 & 3 \end{vmatrix} \]
\[ \overrightarrow{OA} \times \overrightarrow{OB} = \hat{i} \begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} \]
Computing each determinant:
\[ \hat{i} ((2)(3) - (1)(-1)) - \hat{j} ((1)(3) - (1)(2)) + \hat{k} ((1)(-1) - (2)(2)) \]
\[ = \hat{i} (6 + 1) - \hat{j} (3 - 2) + \hat{k} (-1 - 4) \]
\[ = 7\hat{i} - \hat{j} - 5\hat{k} \]
The magnitude of the cross product is:
\[ |\overrightarrow{OA} \times \overrightarrow{OB}| = \sqrt{(7)^2 + (-1)^2 + (-5)^2} \]
\[ = \sqrt{49 + 1 + 25} = \sqrt{75} = 8.66 \]
\[ \text{Area} = \frac{1}{2} \times 8.66 = 4.33 \]
The area of the triangle OAB is 4.33.
At a particular temperature T, Planck's energy density of black body radiation in terms of frequency is \(\rho_T(\nu) = 8 \times 10^{-18} \text{ J/m}^3 \text{ Hz}^{-1}\) at \(\nu = 3 \times 10^{14}\) Hz. Then Planck's energy density \(\rho_T(\lambda)\) at the corresponding wavelength (\(\lambda\)) has the value \rule{1cm}{0.15mm} \(\times 10^2 \text{ J/m}^4\). (in integer)
[Speed of light \(c = 3 \times 10^8\) m/s]
(Note: The unit for \(\rho_T(\nu)\) in the original problem was given as J/mΒ³, which is dimensionally incorrect for a spectral density. The correct unit J/(mΒ³Β·Hz) or JΒ·s/mΒ³ is used here for the solution.)