The focal length \( f_L \) of the thick lens can be calculated using the lensmaker’s formula for a thick lens:
\[ \frac{1}{f_L} = (n-1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) + \frac{(n-1) t}{n R_1 R_2} \]
where:
\[ \frac{1}{f_L} = (1.5 - 1) \left( \frac{1}{30} - \frac{1}{-20} \right) + \frac{(1.5 - 1) \cdot 4}{1.5 \cdot 30 \cdot (-20)} \]
\[ \frac{1}{f_L} = 0.5 \left( \frac{1}{30} + \frac{1}{20} \right) + \frac{0.5 \times 4}{1.5 \times 30 \times (-20)} \]
Calculating the individual terms:
\[ \frac{1}{f_L} = 0.5 (0.0333 + 0.05 - 0.0022) = 0.5 \times 0.0811 = 0.04055 \]
Thus, the focal length of the lens is:
\[ f_L = \frac{1}{0.04055} \approx 24.67 \text{ cm} \]
The equivalent focal length \( F \) of the lens-mirror system is given by:
\[ \frac{1}{F} = \frac{1}{f_L} + \frac{2}{f_m} \]
where the focal length of the mirror is:
\[ f_m = \frac{R_2}{2} = \frac{-20}{2} = -10 \text{ cm} \]
\[ \frac{1}{F} = \frac{1}{24.67} + \frac{2}{-10} \]
\[ \frac{1}{F} = 0.04055 - 0.2 = -0.15945 \]
Thus, the equivalent focal length is:
\[ F = \frac{1}{-0.15945} \approx -6.27 \text{ cm} \]
The object distance from the lens-mirror system is:
\[ u = -60 \text{ cm} \]
Using the lens formula for the system:
\[ \frac{1}{F} = \frac{1}{v} - \frac{1}{u} \]
\[ \frac{1}{-6.27} = \frac{1}{v} - \frac{1}{-60} \]
Rearranging the equation:
\[ -0.15945 = \frac{1}{v} + 0.01667 \]
\[ \frac{1}{v} = -0.15945 - 0.01667 = -0.17612 \]
Thus, the image distance is:
\[ v = \frac{1}{-0.17612} \approx -5.68 \text{ cm} \]
The distance \( d \) between \( O \) and \( Q \) is given by:
\[ d = |v| - t \]
Substituting the values:
\[ d = 5.68 - 4.00 = 3.50 \text{ cm} \]
The distance \( d \) between \( O \) and \( Q \) is 3.50 cm.
Calculate the angle of minimum deviation of an equilateral prism. The refractive index of the prism is \(\sqrt{3}\). Calculate the angle of incidence for this case of minimum deviation also.