\(\text{Zero}\)
\(-\frac{1}{r^4}\)
The vector field is \( \mathbf{F} = \frac{\mathbf{r}}{r^3} \), where \( \mathbf{r} = r\hat{r} \) and \( r = \sqrt{x^2 + y^2 + z^2} \). Using the divergence formula:
\[ \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}, \] after computing partial derivatives and simplifying, we find:
\[ \nabla \cdot \mathbf{F} = 0. \]
Final Answer: The divergence of \( \frac{\hat{r}}{r^3} \) is Zero.

