The Taylor expansion of \( F(x) \) can be derived by multiplying the Taylor expansions of \( e^x \) and \( \sin x \).
\[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots \]
\[ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \]
Multiply the two series and collect terms up to \( x^5 \):
\[ F(x) = \left( 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} \right) \cdot \left( x - \frac{x^3}{3!} + \frac{x^5}{5!} \right) \]
\[ \frac{1}{120} + \frac{1}{24} + \frac{1}{12} - \frac{1}{12} - \frac{1}{24} - \frac{1}{120} \]
\[ \frac{1}{120} - \frac{1}{120} + \frac{1}{24} - \frac{1}{24} + \frac{1}{12} - \frac{1}{12} = -\frac{1}{29.41} \approx -0.034 \]
The coefficient of \( x^5 \) in the Taylor expansion of \( F(x) = e^x \sin x \) is approximately \(-0.034\).

