When solving ligand field strength problems, always refer to the spectrochemical series. Stronger field ligands cause larger splitting of d-orbitals in transition metal complexes.
\(\text{CO} < \text{en} < \text{NH}_3 < \text{C}_2\text{O}_4^{2-} < \text{S}^{2-}\)
\(\text{S}^{2-} < \text{NH}_3 < \text{en} < \text{CO} < \text{C}_2\text{O}_4^{2-}\)
\(\text{NH}_3 < \text{en} < \text{CO} < \text{S}^{2-} < \text{C}_2\text{O}_4^{2-}\)
\(\text{S}^{2-} < \text{C}_2\text{O}_4^{2-} < \text{NH}_3 < \text{en} < \text{CO}\)
Step 1: Understand the Spectrochemical Series
The spectrochemical series arranges ligands based on their field strength, which affects the splitting of d-orbitals in a coordination compound. The increasing order of ligand field strength is:
\[\text{S}^{2-} < \text{C}_2\text{O}_4^{2-} < \text{NH}_3 < \text{en} < \text{CO}.\]
Step 2: Explanation of the Order
\(\text{S}^{2-}\): Sulfide ions are weak field ligands due to their large size and low charge density.
\(\text{NH}_3\): Ammonia has higher field strength due to its ability to donate lone pair electrons.
\(\text{en}\) (Ethylenediamine): A bidentate ligand with stronger field strength than \(\text{NH}_3\).
\(\text{CO}\) (Carbon monoxide): A strong field ligand due to its \(\pi\)-back bonding capability.
Write two consequences of lanthanide contraction.
Which is the correct IUPAC name for
The steam volatile compounds among the following are:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]
A coordination compound holds a central metal atom or ion surrounded by various oppositely charged ions or neutral molecules. These molecules or ions are re-bonded to the metal atom or ion by a coordinate bond.
A coordination entity composes of a central metal atom or ion bonded to a fixed number of ions or molecules.
A molecule, ion, or group which is bonded to the metal atom or ion in a complex or coordination compound by a coordinate bond is commonly called a ligand. It may be either neutral, positively, or negatively charged.