In a diode circuit, for the diode to be forward-biased, the P-end should be connected to a higher potential than the N-end. In option (4), the P-end of the diode is connected to the negative terminal of the power supply, while the N-end is connected to the positive terminal. This configuration causes the diode to be reverse-biased, as it is in opposition to the direction required for forward bias.
Thus the correct answer is option 4.
A pure silicon crystal with 5 × 1028 atoms m−3 has ni = 1.5 × 1016 m−3. It is doped with a concentration of 1 in 105 pentavalent atoms, the number density of holes (per m3) in the doped semiconductor will be:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]