Hydrogen peroxide (H2O2) decomposes readily in the presence of light, heat, and impurities like dust or alkali. Urea acts as a stabilizer for hydrogen peroxide by forming a complex that reduces the rate of decomposition.
Conclusion: The correct answer is option (2).
Which of the following is/are correct with respect to the energy of atomic orbitals of a hydrogen atom?
(A) \( 1s<2s<2p<3d<4s \)
(B) \( 1s<2s = 2p<3s = 3p \)
(C) \( 1s<2s<2p<3s<3p \)
(D) \( 1s<2s<4s<3d \)
Choose the correct answer from the options given below:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
Consider the following data:
- Heat of formation of \( CO_2(g) \) = -393.5 kJ mol\(^{-1}\)
- Heat of formation of \( H_2O(l) \) = -286.0 kJ mol\(^{-1}\)
- Heat of combustion of benzene = -3267.0 kJ mol\(^{-1}\)
The heat of formation of benzene is ……… kJ mol\(^{-1}\) (Nearest integer).
An ideal gas undergoes a cyclic transformation starting from point A and coming back to the same point by tracing the path A→B→C→D→A as shown in the three cases below.
Choose the correct option regarding \(\Delta U\):
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is
Hydrogen peroxide is a chemical element including hydrogen and oxygen. Anhydrous hydrogen peroxide is a colorless, sugary liquid that breaks down quickly into oxygen and water. The chemical formula for hydrogen peroxide [H2O2] is H—O—O—H, here, each dash represents a single covalent link. Especially, each bond has a pair of mutual electrons, one from each of the atoms at the bond’s ends. The polar bonds are H—O bonds, but this is not the polar one - O—O bonds.