Consider the following data:
- Heat of formation of \( CO_2(g) \) = -393.5 kJ mol\(^{-1}\)
- Heat of formation of \( H_2O(l) \) = -286.0 kJ mol\(^{-1}\)
- Heat of combustion of benzene = -3267.0 kJ mol\(^{-1}\)
The heat of formation of benzene is ……… kJ mol\(^{-1}\) (Nearest integer).
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
Which of the following is/are correct with respect to the energy of atomic orbitals of a hydrogen atom?
(A) \( 1s<2s<2p<3d<4s \)
(B) \( 1s<2s = 2p<3s = 3p \)
(C) \( 1s<2s<2p<3s<3p \)
(D) \( 1s<2s<4s<3d \)
Choose the correct answer from the options given below:
An ideal gas undergoes a cyclic transformation starting from point A and coming back to the same point by tracing the path A→B→C→D→A as shown in the three cases below.
Choose the correct option regarding \(\Delta U\):
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: