• Calculate the freezing point depression (\( \Delta T_f \)):
\( \Delta T_f = 273.15 - 270.65 = 2.5 \, \text{K} \)
• Using the formula for freezing point depression:
\( \Delta T_f = K_f \cdot m = 2.5 = 1.86 \times \frac{n}{0.1} \)
• Solve for moles of methanol (\( n \)):
\( n = 0.1344 \, \text{moles} \)
• Calculate the mass of methanol (\( w \)):
\( w = 0.1344 \times 32 = 4.3 \, \text{g} \)
• Calculate the volume of methanol:
\( \text{Volume} = \frac{4.3}{0.792} = 5.43 \, \text{mL} = 543 \times 10^{-2} \, \text{mL} \)
Answer: \( x = 543 \)
Among $ 10^{-10} $ g (each) of the following elements, which one will have the highest number of atoms?
Element : Pb, Po, Pr and Pt
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: