Given: - Radius of curvature \( R = 20 \, \text{cm} \), - Refractive indices: \( \mu_1 = 1 \) (air) and \( \mu_2 = 1.5 \) (medium).
Using the lens maker’s formula:
\[ \frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}. \]Substitute \( u = -100 \, \text{cm} \):
\[ \frac{1.5}{v} - \frac{1}{-100} = \frac{1.5 - 1}{20}. \]Solving for \( v \):
\[ \frac{1.5}{v} + \frac{1}{100} = \frac{0.5}{20}, \] \[ \frac{1.5}{v} = \frac{0.5}{20} - \frac{1}{100}, \] \[ v = 100 \, \text{cm}. \]Thus, the image is formed at a distance:
\[ 100 + 100 = 200 \, \text{cm from the object}. \]Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: