The mean free path \( \lambda \) is inversely proportional to the number of molecules per unit volume \( n \).
Hence, we have the relation: \[ \lambda \propto \frac{1}{n} \] Let the initial number of molecules per unit volume be \( n_1 = 0.8 \times 10^{24} \) and the initial mean free path be \( \lambda_1 = 2.2 \times 10^{-5} \, {m} \).
When the number of molecules per unit volume is increased to \( n_2 = 1.0 \times 10^{24} \), the mean free path \( \lambda_2 \) becomes: \[ \frac{\lambda_2}{\lambda_1} = \frac{n_1}{n_2} \] Substituting the values: \[ \frac{\lambda_2}{2.2 \times 10^{-5}} = \frac{0.8 \times 10^{24}}{1.0 \times 10^{24}} = 0.8 \] Thus: \[ \lambda_2 = 0.8 \times 2.2 \times 10^{-5} = 1.76 \times 10^{-5} \, {m} \] Hence, the correct answer is (B).
Let \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1+5^x} \, dx \). Then: