Question:

When the number of molecules per unit volume of an ideal gas is \( 0.8 \times 10^{24} \), the mean free path length for its molecules is \( 2.2 \times 10^{-5} \, {m} \). If the number of molecules per unit volume is \( 1.0 \times 10^{24} \), then the mean free path is

Show Hint

The mean free path is inversely proportional to the number of molecules per unit volume. If the number of molecules increases, the mean free path decreases.
Updated On: Mar 6, 2025
  • \( 17.6 \times 10^{-5} \, {m} \)
  • \( 1.76 \times 10^{-5} \, {m} \)
  • \( 3.52 \times 10^{-5} \, {m} \)
  • \( 35.2 \times 10^{-5} \, {m} \)
  • \( 8.8 \times 10^{-5} \, {m} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The mean free path \( \lambda \) is inversely proportional to the number of molecules per unit volume \( n \). 
Hence, we have the relation: \[ \lambda \propto \frac{1}{n} \] Let the initial number of molecules per unit volume be \( n_1 = 0.8 \times 10^{24} \) and the initial mean free path be \( \lambda_1 = 2.2 \times 10^{-5} \, {m} \). 
When the number of molecules per unit volume is increased to \( n_2 = 1.0 \times 10^{24} \), the mean free path \( \lambda_2 \) becomes: \[ \frac{\lambda_2}{\lambda_1} = \frac{n_1}{n_2} \] Substituting the values: \[ \frac{\lambda_2}{2.2 \times 10^{-5}} = \frac{0.8 \times 10^{24}}{1.0 \times 10^{24}} = 0.8 \] Thus: \[ \lambda_2 = 0.8 \times 2.2 \times 10^{-5} = 1.76 \times 10^{-5} \, {m} \] Hence, the correct answer is (B).

Was this answer helpful?
0
0